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RONG LUO† , JEAN-SÉBASTIEN SERENI‡ , D. CHRISTOPHER STEPHENS† , AND

GEXIN YU§

Abstract. A proper vertex coloring of a graph G is equitable if the sizes of color classes differ
by at most one. The equitable chromatic threshold χ∗

eq(G) of G is the smallest integer m such that
G is equitably n-colorable for all n ≥ m. We show that for planar graphs G with minimum degree at
least two, χ∗

eq(G) ≤ 4 if the girth of G is at least 10, and χ∗
eq(G) ≤ 3 if the girth of G is at least 14.
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1. Introduction. Graph coloring is a natural model for scheduling problems.
Given a graph G = (V,E), a proper vertex k-coloring is a mapping f : V (G) →
{1, 2, . . . , k} such that f(u) �= f(v) if uv ∈ E(G). The notion of equitable coloring is
a model to equally distribute resources in a scheduling problem. A proper k-coloring
f is equitable if

|V1| ≤ |V2| ≤ · · · ≤ |Vk| ≤ |V1|+ 1,

where Vi = f−1 (i) for i ∈ {1, 2, . . . , k}.
The equitable chromatic number χeq(G) of G is the smallest integerm such that G

is equitably m-colorable. The equitable chromatic threshold of G, denoted by χ∗
eq(G),

is the smallest integer m such that G is equitably n-colorable for all n ≥ m. Note that
χeq(G) ≤ χ∗

eq(G) for every graph G, and the two values may be different: for example,
χeq(K7,7) = 2, while χ∗

eq(K7,7) = 8.
Hajnal and Szemerédi [2] proved that χ∗

eq(G) ≤ Δ(G) + 1 for any graph G with
maximum degree Δ(G). The following conjecture made by Chen, Lih, and Wu [1], if
true, strengthens the above result.

Conjecture 1.1 (Chen, Lih, and Wu [1]). For any connected graph G different
from Km, C2m+1 and K2m+1,2m+1, χ

∗
eq(G) ≤ Δ(G).

Except for some special cases, the conjecture is still wide open in general.
Another direction of research on equitable coloring is to consider special families of

graphs. For planar graphs, Zhang and Yap [5] proved that a planar graph is equitably
m-colorable if m ≥ Δ(G) ≥ 13. When the girth g(G) is large, fewer colors are needed.
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Theorem 1.1 (Wu and Wang [4]). Let G be a planar graph with δ(G) ≥ 2.
(a) If g(G) ≥ 26, then χ∗

eq(G) ≤ 3.
(b) If g(G) ≥ 14, then χ∗

eq(G) ≤ 4.
The purpose of this paper is to improve the above two results. Our main results

are contained in the following theorems.
Theorem 1.2. If G is a planar graph with δ(G) ≥ 2 and g(G) ≥ 10, then

χ∗
eq(G) ≤ 4.

Theorem 1.3. If G is a planar graph with δ(G) ≥ 2 and g(G) ≥ 14, then
χ∗
eq(G) ≤ 3.

Since K1,n is not equitably k-colorable when n ≥ 2k − 1, we cannot drop the
requirement of δ(G) ≥ 2 in the theorems. On the other hand, we do not believe that
the girth conditions are best possible. Note that χ∗

eq(K2,n) = �n
3 � + 1 for n ≥ 2 and

that the girth of K2,n is 4. It would be interesting to find the best possible girth
condition for both 3- and 4-equitable colorings.

Last, let us note that, actually, we do not use planarity but only the weaker as-
sumption that the graphs have maximum average degree less than 2.5 for Theorem 1.2
and less than 7/3 for Theorem 1.3. We do need the girth conditions, however, not only
to control the density but also to ensure that the minimum degree is at least 2 at all
times when we do reductions.

2. Preliminaries. Before starting, we introduce some notation. In the whole
paper, we take 1, 2, . . . ,m to be the set of integers modulo m. A k-vertex is a vertex
of degree k; a k+- and a k−-vertex have degree at least and at most k, respectively.
A thread is either (a) a path with 2-vertices in its interior and 3+-vertices as its
endvertices or (b) a cycle with exactly one 3+-vertex and all other vertices of degree 2
(in other words, case (a) with endvertices equal). A k-thread has k interior 2-vertices.
If a 3+-vertex u is the endvertex of a thread containing a 2-vertex v and the distance
between u and v on the thread is l+1, then we say that u and v are loosely l-adjacent.
Thus “loosely 0-adjacent” is the same as the usual “adjacent.”

All of our proofs rely on the techniques of reducibility and discharging. We start
with a minimal counterexample G to the theorem we are proving, and the idea of the
reduction is as follows. We remove a small subgraphH (for instance, a vertex of degree
at least three, together with its incident 2-threads) from the graph G. By the mini-
mality of G, we therefore have an equitable k-coloring f of G−H , and we attempt to
extend f to an equitable coloring of G. This can be done if we can equitably k-colorH
itself with some extra conditions, namely, the color classes which should be “large” in
H are predetermined by the existing coloring ofG−H , and second, the parts ofH with
edges to G−H have color restrictions. If every equitable k-coloring of G−H can be
extended into an equitable k-coloring of G, then H is called a reducible configuration.

We will handle the latter condition by means of lists of allowed colors in H . We
will handle the former condition by predetermining the sizes of the color classes. Thus
we have the following definition.

Definition 2.1. Let H be a graph with list assignment L = {lv} with lv ⊆
{1, 2, . . . ,m}. The graph H is descending-equitably L-colorable if H can be L-colored
such that |V1| ≥ |V2| ≥ · · · ≥ |Vm| ≥ |V1| − 1.

Note that if G −H has an equitable k-coloring with |V1| ≤ |V2| ≤ · · · ≤ |Vk| ≤
|V1| + 1, then G is equitably k-colorable if H is descending-equitably L-colorable.
Because of this, a descending-equitably L-colorable subgraph H is a reducible config-
uration in G. Regarding the lists �v, we always take �v to be the set of all colors not
assigned to any neighbor of v in G−H .
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The maximum average degree of G is mad(G) = max{ 2|E(H)|
|V (H)|

∣∣∣ H ⊆ G}. A planar

graph G with girth at least g has maximum average degree less than 2g
g−2 . We let the

initial charge at vertex v be M(v) = d(v) − 2g
g−2 . We will introduce some rules to

redistribute the charges (discharging), and after the discharging process, every vertex
v has a final charge M ′(v). Note that

(1)
∑

v∈V (G)

M ′(v) =
∑

v∈V (G)

M(v) =
∑

v∈V (G)

(
d(v)− 2g

g − 2

)
< 0.

We will show that either we have some reducible configurations or the final charges are
all nonnegative. The former contradicts the assumption that G is a counterexample,
and the latter contradicts (1).

We will prove the theorems on 3-coloring and 4-coloring separately. Before the
proofs, we provide some properties useful to equitable m-coloring with m ≥ 3.

Let m ≥ 3 be an integer. Let G be a graph that is not equitably m-colorable with
|V |+ |E| as small as possible.

Observation 2.1. The graph G is connected.
Proof. Let H1, H2, . . . , Hk be the connected components of G, where k ≥ 2. By the

minimality of G, both H = H1∪H2∪· · ·∪Hk−1 and Hk are equitably m-colorable. An
equitable m-coloring of H with |V1(H)| ≥ |V2(H)| ≥ · · · ≥ |Vm(H)| and an equitable
m-coloring of Hk with |V1(Hk)| ≤ |V2(Hk)| ≤ · · · ≤ |Vm(Hk)| induce an equitable
m-coloring of G, which contradicts the choice of G.

3. Equitable 4-coloring. In this section, we prove Theorem 1.2. We start with
some useful lemmas. The following lemma is an extension of a fact first observed by
Kostochka, Pelsmajor, and West [3].

Lemma 3.1. Fix a positive integer m, and let t ∈ {1, 2, . . . ,m}. Let S =
{x1, x2, . . . , xt} be a set of t distinct vertices in G with t ≤ m. Let L = {�v}v∈S

be a list assignment with �v ⊆ {1, 2, . . . ,m} for all v ∈ S. If G − S has an equitable
m-coloring f and

(2) |�xi | ≥ |NG(xi) \ S|+ i

for i ∈ {1, 2, . . . , t}, then f can be extended into an equitable m-coloring of G.
Proof. Let Gi = G−{xi+1, . . . , xt} for i ∈ {0, 1, . . . , t−1}. Then G0 = G−S, and

Gm = G. Starting from an equitable coloring of G0, we extend it to G1, G2, . . . , Gt

in this order. Suppose that we are to color xi+1, given an equitable coloring of Gi.
By (2), we can give a color to xi+1 that is in lxi+1 and is different from the colors
used on x1, x2, . . . , xi. By construction, the colors used on S are all different; hence
the coloring of Gt = G is an equitable m-coloring.

Lemma 3.2. Let G be a graph and P = y0y1 . . . ytyt+1 such that t ∈ {4, 5} and
d(yi) = 2 for each i ∈ {1, 2, . . . , t}. Let m ≥ 4 be an integer and a, b ∈ {1, 2, . . . ,m}.
Let x be an arbitrary vertex in {y1, y2, . . . , yt}. If G − {y1, . . . , yt} has an equitable
m-coloring f , then f can be extended to an equitable m-coloring of G such that f(x) /∈
{a, b} unless m = 4, t = 5, and x ∈ {y2, y4}.

Proof. Let V1, . . . , Vm be the m color classes of G− S under f with |V1| ≤ |V2| ≤
· · · ≤ |Vm|, where S = {y1, y2, . . . , yt}. By symmetry, we may assume that x = yi with
i ≤ � t

2�.
When m ≥ t, we arrange the vertices yj into a list x1, x2, . . . , xt such that x1 = x

and xt /∈ {y1, yt}, and we assign every vertex other than x with the same color list
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{1, 2, . . . , t}. Let lx = {1, 2, . . . , t} \ {a, b}. Then, by Lemma 3.1, we can extend f to
G such that f(x) /∈ {a, b}.

If m < t, then m = 4 and t = 5, and in this case, x ∈ {y1, y3}. If 1 /∈ {a, b, f(y0)},
then assign 1 to y1 and y3, assign a color c ∈ {2, 3, 4} \ {f(y6)} to y5, and assign the
other two colors in {2, 3, 4} \ {c} arbitrarily to y2 and y4. If 1 ∈ {f(y0), a, b}, then
|{2, 3, 4} − {f(y0), a, b}| ≥ 1. Let x′ ∈ {y1, y3} \ {x} and c2 ∈ {2, 3, 4} \ {f(y0), a, b}.
Assign 1 to y2 and y4, assign c2 to x, assign a color c3 ∈ {2, 3, 4} \ {c2, f(y0)} to x′,
and assign the remaining color c4 ∈ {2, 3, 4} \ {c2, c3} to y5. If c4 = f(y6), then swap
colors on y5 and y4, i.e., recolor y4 with c4 and y5 with 1. In either case, f is extended
to G, a contradiction.

Lemma 3.3. Let xy1y2y be a 2-thread of G and m ≥ 4 be an integer. If G−{y1, y2}
has an m-equitable coloring f such that f(x) �= f(y), then f can be extended to an
equitable m-coloring of G.

Proof. Let f be an equitable m-coloring of G−{y1, y2}, and let V1, . . . , Vm be the
m color classes with |V1| ≤ |V2| ≤ · · · ≤ |Vm|. If f(x) �= f(y), then there is a bijection
φ : {1, 2} → {1, 2} such that φ(1) �= f(x) and φ(2) �= f(y). Assign φ(1) to y1 and φ(2)
to y2. Hence f can be extended to G.

Lemma 3.4. Let xy1y2y be a 2-thread and xy3z be a 1-thread incident with x. Let
m ≥ 4 be an integer. If G − {y1, y2, y3} has an equitable m-coloring f with f(x) �∈
{f(y), f(z)}, then f can be extended to an equitable m-coloring of G.

Proof. Let V1, V2, . . . , Vm be the m color classes with |V1| ≤ |V2| ≤ · · · ≤ |Vm|. If
f(x) ∈ {1, 2, 3}, then let a = f(x), so a �= f(y). Otherwise, let a ∈ {1, 2, 3} \ {f(y)}.
Let b ∈ {1, 2, 3} \ {a, f(z)} and c ∈ {1, 2, 3} \ {a, b}. Then b /∈ {f(x), f(z)}, c �= f(x),
and {a, b, c} = {1, 2, 3}. Assigning a to y2, b to y3, and c to y1 yields an equitable
m-coloring of G, a contradiction.

Proof of Theorem 1.2. Let G be a minimal counterexample to Theorem 1.2 with
|V | + |E| as small as possible. That is, G is a planar graph with δ(G) ≥ 2 and girth
at least 10, and G is not equitably m-colorable for some integer m ≥ 4, but every
proper subgraph of G with minimum degree at least 2 is equitably m-colorable for
each m ≥ 4.

Claim 3.1. The graph G has no t-thread with t ≥ 3, and G has no thread whose
endvertices are identical.

Proof. Suppose, on the contrary, that G has a t-tread P = v0v1 . . . vtvt+1 with
t ≥ 3, where d(v0), d(vt+1) ≥ 3.

If v0 �= vt+1 or d(v0) ≥ 4, consider G1 = G − {v1, . . . , vt}. Then δ(G1) ≥ 2. By
the minimality of G, the graph G1 has an equitable m-coloring. Let V1, V2, . . . , Vm be
the m color classes with |V1| ≤ |V2| ≤ · · · ≤ |Vm|. We can extend the coloring to G to
obtain an equitable m-coloring of G as follows: First color the vertex vi by the color
k, where k ≡ i (mod m) for each i ∈ {1, 2, . . . , t}. Swap the colors of v1 and v2 if the
colors of v1 and v0 are the same, and further swap the colors of vt−1 and vt if the
colors of vt and vt+1 are the same.

Now assume that v0 = vt+1 and d(v0) = 3. Let x ∈ N(v0) \ {v1, vt}. If d(x) ≥ 3,
consider G2 = G−{v0, v1, . . . , vt}. Then δ(G2) ≥ 2. By the choice of G, the graph G2

has an equitable m-coloring with color classes V1, V2, . . . , Vm such that |V1| ≤ |V2| ≤
· · · ≤ |Vm|. Since q ≥ 1, we can extend the coloring to G to obtain an equitable m-
coloring of G as follows: First color the vertex vi by the color k, where k ≡ i (mod m).
If 0 ≡ t (mod m), swap the colors of vt and vt−1. If the colors of x and v0 are the same,
further swap the colors of v0 and vi, where i ∈ {1, 2} such that the color of vi is different
from that of vt (such a vertex vi exists since v0, v1, and v2 are colored differently).
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If d(x) = 2, then let Q = x0x1 . . . xqxq+1 be the thread containing the edge v0x1,
where x1 = x and x0 = v0. Consider the graph G3 = G − {v0, x1, . . . , xq, v1, . . . , vt}.
Then δ(G3) ≥ 2. By the minimality of G, the graph G3 has an equitable m-coloring
with color classes V1, V2, . . . , Vm such that |V1| ≤ |V2| ≤ · · · ≤ |Vm|. We first extend
the coloring toG2 to obtain an equitablem-coloring of G−{v1, . . . , vt} as follows: First
color the vertex xi by the color k, where k ≡ i+ 1 (mod m) for each i ∈ {0, 1, . . . q}.
If xq and xq+1 have the same color, swap the colors of xq and xq−1. Next we further
extend the coloring to G similarly to the case that d(v0) ≥ 4.

Let x be a vertex of degree d = d(x) ≥ 3. Then x is the endvertex of d threads. Set
T (x) = (a2, a1, a0), where ai is the number of i-threads incident with x. Let t(x) =
2a2+a1. Claim 3.1 implies that t(x) is the number of 2-vertices loosely adjacent to x.

Claim 3.2. If x is a 4-vertex, then t(x) ≤ 5.
Proof. Suppose, on the contrary, that x is a 4-vertex with t(x) ≥ 6. Claim 3.1

implies that x is not incident with any t-thread such that t ≥ 3. Since t(x) ≥ 6, the
vertex x is incident with at least two 2-threads. Label two 2-threads incident with x
as xx1z1y1 and xx2z2y2.

We first show that x is incident with at most two 2-threads. Suppose that x
is incident with a third 2-thread xx3z3y3. Label the fourth thread incident with x
as xx4z4y4, xz4y4, or xy4, depending on whether it is a 2-thread, a 1-thread, or
a 0-thread. Set A = {x, xi, zi | 1 ≤ i ≤ 4}, A = {x, xj , zi | 1 ≤ i ≤ 4, 1 ≤ j ≤ 3}, or
A = {x, xi, zi | 1 ≤ i ≤ 3}, depending on whether x is incident with four 2-threads,
a 1-thread, or a 0-thread, respectively. Since g(G) ≥ 10, the threads do not share
endvertices other than x, so δ(G−A) ≥ 2. By the minimality of G, the graph G−A
has an equitable m-coloring f .

Now if x is not incident with a 0-thread, then by Lemma 3.2, f can be extended
to G − {x1, x2, z1, z2} such that f(x) �∈ {f(y1), f(y2)}. By Lemma 3.3, it can be
further extended to G−{x1, z1} since f(x) �= f(y2) and to G since f(x) �= f(y1). This
contradicts the choice of G.

If, on the other hand, x is incident with a 0-thread, then first extend the coloring
f of G−A to G−{x1, z1}−xy4 such that f(x) �∈ {f(y1), f(y4)} by Lemma 3.2. Since
f(x) �= f(y4), it is also an equitable m-coloring of G − {x1, z1}. Since f(x) �= f(y1),
by Lemma 3.3, the coloring of G − {x1, z1} can be extended to G, a contradiction.
This proves that x is incident with at most two 2-threads.

Therefore, t(x) ≤ 6, and hence t(x) = 6. Thus, T (x) = (2, 2, 0). Label the two 1-
threads incident with x as xx3y3 and xx4y4. Then G−{x, z1, z2, xi | 1 ≤ i ≤ 4} has an
equitable m-coloring. Since y3x3xx2z2y2 is a 4-thread in G−{x1, z1, x4}, Lemma 3.2
implies that f can be extended to G − {x1, z1, x4} such that f(x) /∈ {f(y1), f(y4)}.
By Lemma 3.4, it can be further extended to G. This contradicts the choice of G,
thereby proving Claim 3.2.

Claim 3.3. For a 3-vertex x, either t(x) ≤ 2 or T (x) = (1, 2, 0) and m = 4.
Proof. We first prove that T (x) �= (1, 2, 0) if m ≥ 5. Suppose, on the contrary,

that T (x) = (1, 2, 0) and m ≥ 5. Label the two 1-threads incident with x as xx1y1 and
xx2y2, and label the 2-thread as xx3x4y3. Let A = {x, x1, x2, x3, x4}. Then δ(G−A) ≥
2, and it has an equitable m-coloring f with color classes V1, V2, . . . , Vm such that
|V1| ≤ |V2| ≤ · · · ≤ |Vm|. Let {a, b, c, d, e} = {1, 2, 3, 4, 5} such that a �= f(y1),
b �= f(y2), and c �= f(y3). Assigning a to x1, b to x2, c to x4, d to x, and e to x3 yields
an equitable m-coloring of G, a contradiction.

Now we prove that if T (x) �= (1, 2, 0), then t(x) ≤ 2. Suppose, on the contrary,
that t(x) ≥ 3 and T (x) �= (1, 2, 0). Claim 3.1 implies that x is not incident with any



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EQUITABLE COLORING OF SPARSE PLANAR GRAPHS 1577

t-thread where t ≥ 3. We first consider the case where x is not incident with a 2-thread.
Then T (x) = (0, 3, 0). Label the three 1-threads incident with x as xxiyi, where
d(xi) = 2 and d(yi) ≥ 3 for i ∈ {1, 2, 3}. Consider the graph G1 = G−{x, x1, x2, x3}.
Then δ(G1) ≥ 2, so by the minimality of G, the graph G1 has an equitable m-coloring
with color classes V1, V2, . . . , Vm such that |V1| ≤ |V2| ≤ · · · ≤ |Vm|. Let {1, 2, 3, 4} =
{a, b, c, d} such that no color in {a, b, c} is used by all three vertices y1, y2, y3. An
equitable m-coloring of G can be obtained by coloring the vertices x1, x2, x3 with the
colors a, b, c such that no conflict occurs and coloring the vertex x with the color d.
This contradiction shows that T (x) �= (0, 3, 0), and hence x is incident with at least
one 2-thread.

Now we consider the case that a2 �= 0. Let xx1x2y be a 2-thread incident with
x. If t(x) ≥ 5, then G − {x1, x2} has minimum degree 2 and has a t-thread P that
contains x for some t ∈ {4, 5}. Let G2 be the subgraph obtained from G−{x1, x2} by
further deleting the degree-2 vertices in P . Then G2 has an equitable m-coloring f .
By Lemma 3.2, f can be extended to G − {x1, x2} such that f(x) �= f(y). By Claim
3.3, f can be further extended to G. This contradiction shows that 3 ≤ t(x) ≤ 4. Since
x is incident with at least one 2-thread and T (x) �= (1, 2, 0), the vertex x must be
incident with a 0-thread. Call it xu. Since t(x) ≥ 3, the graph G− xu has a t-thread
P that contains x with t ∈ {4, 5}. Let G3 be the subgraph obtained from G− xu by
further deleting the degree-2 vertices in P . Then G3 has an equitable m-coloring f .
Lemma 3.2 implies that f can be extended to G − xu such that f(x) �= f(u). This
extension of f is also an equitable m-coloring of G, a contradiction. This completes
the proof of Claim 3.3.

A 3-vertex x in G is bad if T (x) = (1, 2, 0). Note that if m ≥ 5, the configuration
T (x) = (1, 2, 0) with d(x) = 3 is still reducible; thus there are no bad 3-vertices when
m ≥ 5. The following claim deals with reducible configurations for m = 4.

Claim 3.4. Assume m = 4. Let x be a bad 3-vertex and y be a vertex that is
loosely 1-adjacent to x. Then
(1) if d(y) = 3, then t(y) = 1;
(2) if d(y) = 4, then y is loosely 1-adjacent to exactly one bad 3-vertex, namely, x.

Proof. Label the threads incident with x as xx1x2u1, xx3u2, and xx4y. Here and
after in the proof, we always assume that the vertices xi, yi, and zi have degree 2,
while the vertices ui have degree at least 3.

(1) Suppose that d(y) = 3 and t(y) ≥ 2. Then Claim 3.3 ensures that either
t(y) = 2 or y is a bad 3-vertex. If t(y) = 2, then T (y) = (0, 2, 0), while if y is a
bad 3-vertex, then T (y) = (1, 2, 0). In either case, y is incident with exactly two
1-threads. Label the other 1-thread incident with y as yy1z. Label the third thread
incident with y as yu0 or yy2y3u0, depending on whether it is a 0-thread or a 2-
thread. Set A = {x, y, y1, xi | 1 ≤ i ≤ 4}. Let B = ∅ if y is incident with a 0-thread
and B = {y2, y3} otherwise. Consider the graph G1 = G− (A ∪B). Since g(G) ≥ 10,
the vertices u1, u2, z, u0 are distinct, and thus δ(G1) ≥ 2. By the minimality of G, the
graph G1 has an equitable 4-coloring. Note that any 4-equitable coloring of G1 can be
extended to G−A, and let f be an equitable 4-coloring of G−A. We color x, y, y1,
and x4 in this order as follows: Pick one color c1 for x in {1, 2, 3, 4} \ {f(u1), f(u2)},
c2 for y in {1, 2, 3, 4} \ {c1, c(y2)} if B �= ∅ and in {1, 2, 3, 4} \ {c1, c(u)} if B = ∅,
c3 for y1 in {1, 2, 3, 4} \ {c1, c2, c(z)}, and c4 for x4 in {1, 2, 3, 4} \ {c1, c2, c3}. In
such a way, f can be extended to an equitable coloring of G− {x1, x2, x3} such that
f(x) /∈ {f(u1), f(u2)}.
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By Lemma 3.4, the equitable 4-coloring ofG−{x1, x2, x3} can be further extended
to G, which contradicts the choice of G, and hence we prove (1).

(2) Suppose that d(y) = 4 and that y is loosely 1-adjacent to two bad 3-vertices x
and z. Label the threads incident with z as zz1z2u3, zz3u4, and zy1y. Let u5 and u6

be the endvertices of the two threads incident with y other than the ones incident to x
and z. Set A = {x, y, z, y1, xi, zj | 1 ≤ i ≤ 4, 1 ≤ j ≤ 3}. Let B be the set of 2-vertices
on the two threads incident with y other than yy1z and yx4x. Let G1 = G− (A∪B).
Observe that, since g(G) ≥ 10, all the named vertices are distinct except, possibly, u1

and u3. Consequently, either δ(G1) ≥ 2 or u1 = u3, and u1 has degree 3 in G. However,
this last case contradicts Claim 3.3. Thus, δ(G1) ≥ 2, and hence G1 has an equitable
4-coloring f with color classes V1, V2, V3, V4 such that |V1| ≤ |V2| ≤ |V3| ≤ |V4|. Note
that if y is incident with a 2-thread, then f can be extended to the 2-vertices in the
2-thread. This is why, in the following, we may assume, without loss of generality,
that y is not incident with a 2-thread.

We first consider the case where y is incident with exactly two 1-threads: xx4y
and zy1y. Then B = ∅. Using Lemma 3.2, we extend f to y1yx4x such that
f(y) /∈ {f(u5), f(u6)}. Note that the colors f(x), f(x4), f(y), and f(y1) are distinct. If
f(x) ∈ {f(u1), f(u2)}, then one of f(x4) and f(y1) is not in {f(u1), f(u2)}. If f(x4) /∈
{f(u1), f(u2)}, then swap the colors of f(x) and f(x4). If f(y1) /∈ {f(u1), f(u2)}, then
swap the colors of f(x) and f(y1). Hence we have an extension of f on xx4yy1 such
that f(x) /∈ {f(u1), f(u2)}. By Lemmas 3.2 and 3.4, f can be further extended to G,
a contradiction.

Now we consider the case where y is incident with at least three 1-threads. Label
the third 1-thread as yy2u5 and the fourth thread incident with y as yy3u6 or yu6,
depending on whether it is a 1-thread or a 0-thread. Note that either B = {y2} or
B = {y2, y3}. We first extend f to {x4, y, y1}∪B. Let a and b be two distinct colors in
{1, 2, 3, 4}\{f(u5), f(u6)}. Assign a to y2. If B = {y2}, then assign b to y1; otherwise,
assign b to y3. Now assign each of the colors of {1, 2, 3, 4} \ {a, b} arbitrarily, making
sure that both x and y1 are colored 1 if B = {y2, y3} and 1 /∈ {a, b}. This yields an
equitable 4-coloring of G, a contradiction.

Since g(G) ≥ 10, we have mad(G) < 2.5. Let M(x) = d(x) − 2.5 be the initial
charge of x for x ∈ V . We will redistribute the charges among vertices according to
the discharging rules below.

(R1) Each 2-vertex receives 1
4 from each of the endvertices of the thread containing

it.
(R2) Each bad 3-vertex receives 1

4 from each of the vertices that are loosely 1-
adjacent to it.

Let M ′(x) be the charge of x after application of rules R1 and R2. The following
claim shows a contradiction to (1), which implies the truth of Theorem 1.2.

Claim 3.5. M ′(x) ≥ 0 for each x ∈ V .
Proof. Let x ∈ V . If d(x) = 2, then M ′(x) = 2− 2.5 + 2

4 = 0.
Assume d(x) = 3 and that x is not a bad vertex. If x is not loosely 1-adjacent

to any bad vertex, then Claim 3.3 ensures that t(x) ≤ 2, so x sends out at most
2 × 1

4 = 1
2 . If x is loosely 1-adjacent to a bad vertex, then Claim 3.4 implies that

t(x) = 1, so x sends out at most 1
4 + 1

4 = 1
2 . In either case, M ′(x) ≥ 3− 2.5− 1

2 = 0.
Assume d(x) = 3 and that x is a bad vertex. Then t(x) = 4, and x sends out

4 × 1
4 = 1. It also receives 1

4 from each loosely 1-adjacent vertex, of which there are
2. Hence M ′(x) ≥ 3− 2.5− 1 + 2× 1

4 = 0.
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Assume d(x) = 4. Then x is loosely 1-adjacent to at most one bad 3-vertex by

Claim 3.4. Hence x sends out at most t(x)+1
4 ≤ 3

2 since t(x) ≤ 5 by Claim 3.2.
Therefore M ′(x) ≥ 4− 2.5− 3

2 = 0.
Assume d(x) ≥ 5. Let y be a 3+-vertex that is loosely k-adjacent to x. If k = 2,

then x sends out 2× 1
4 via this 2-thread. If k = 1, then x sends out 1

4 via this thread
if y is not a bad vertex and sends out 2 × 1

4 = 1
2 via this 1-thread if y is a bad

vertex. In summary, x sends out at most 1
2 via each thread incident with it. Hence

M ′(x) ≥ d(x)− 2.5− d(x)
2 = d(x)

2 − 2.5 ≥ 0.

4. Reduction lemmas for equitable 3-coloring. We now proceed to equi-
table 3-coloring. We first prove two lemmas which give conditions for the existence of
reducible configurations.

A subdivided star H is a graph obtained from a star by replacing the edges by
paths. (We will call these paths “threads” as well.) In our reducible configurations, we
will see the natural connections: If we take a vertex v with the 2-vertices on its incident
threads in graph G, we obtain a subdivided star with root v. So in the following two
lemmas, even though we state and prove them as graphs, they are, indeed, part of the
graphs under consideration.

Let avi be the number of i-threads incident to vertex v. If it is clear from the
context, we drop v in the notation. The two lemmas that follow give simple ways to
identify reducible configurations using relations involving avi .

Remark 4.1. In the following lemma, the fact that we assume only two allowed
colors at the root instead of three corresponds to the fact that we are allowing for one
3+-vertex adjacent to the root (i.e., one 0-thread incident with the root).

Lemma 4.1 (reducing a vertex with at most one 0-thread). Let S be a subdivided
star of order s with root x. Let L = {�v} be a list assignment to the vertices of S such
that �v = {1, 2, 3} if v is neither a leaf nor the root, �v ⊂ {1, 2, 3} with |�v| = 2 if
v is a leaf, and |�x| ≥ 2. Let d(x) ≤ 6, and assume ai = 0 unless i ∈ {0, 1, 2, 4}. If
2a4 + a2 ≥ a1 + 1 + ε and a4 ≥ d(x) − 4, then S is descending-equitably L-colorable,
where ε = 3�s/3� − s.

Proof. Let c and c′ be two colors allowed at x. Let pi (i ∈ {1, 2, 3}) be the desired
size of Vi. Let Si (i ∈ {c, c′}) be a maximum independent set that contains the root
and is such that i ∈ lv for all v ∈ Si. Then no vertex of a 1-thread is in any of the
Si’s; each 2-thread contains a leaf that is in at least one of Si’s; and for each 4-thread,
the leaf is in at least one of the Si’s, and the vertex at distance 2 from the root is in
both of the Si’s. Thus |Sc|+ |Sc′ | ≥ 2 + 3a4 + a2.

We wish first to find a color for the roots that may be extended to an in-
dependent set of size �s/3�; the candidates for such a set are Sc and Sc′ . As-
sume, for a contradiction, that they are both of size at most �s/3� − 1. Then,
2+3a4+a2 ≤ |Sc|+ |Sc′ | ≤ 2(�s/3�−1) = 2

3 (s+ε−3) = 2
3 (4a4+2a2+a1+1+ε−3).

Therefore, a4 + 12 ≤ a2 + 2(a1 + ε+ 1) ≤ a2 + 2(2a4 + a2), that is, a4 + a2 ≥ 4. So
a2 + 2(a1 + ε + 1) ≥ a4 + 12 ≥ 16 − a2, and hence a1 + a2 + ε ≥ 7. Adding a4 to
both sides and observing that ε ≤ 2 yields that d(x) ≥ a1 + a2 + a4 ≥ 5 + a4, whence
a4 ≤ d(x) − 5, which contradicts our hypothesis that a4 ≥ d(x) − 4.

Thus there exists an independent set of size at least �s/3� containing the root
and having a common color available. Let c be that color, and fix a subset Tc of Sc of
size exactly pc, with the additional property that Tc contains all vertices of 4-threads
that are at distance exactly 2 from the root. (This is possible because a4 < s/3.)

Let c′ and c′′ be the other two colors. Without loss of generality, we may
assume that pc′ ≥ pc′′ . We color with c′ first. By construction, Tc contains no
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vertices at distance 1 or 3 from the root. There are 2a4 + a2 such vertices that are
not leaves. Assuming that pc′ ≥ �s/3�, we compare these quantities and find that
�s/3� = 4a4+2a2+a1+1+ε

3 ≤ 4a4+2a2+2a4+a2

3 ≤ 2a4 + a2; thus, at worst, 2a4 + a2 is
exactly “big enough,” and we assign a preliminary set Wc′ the color c′ such that (a)
all vertices at distance 3 from the root are in Wc′ and (b) some nonleaf vertices adja-
cent to the root are in Wc′ such that Wc′ has size pc′ . (This is possible because again
a4 < s/3.)

The remaining vertices, which we shall group together in a set Wc′′ , are “assigned”
the color c′′, with the caveat that these Wc′′ vertices contain the leaves and thus may
not have c′′ in their list.

To pass, therefore, to a legitimate L-coloring, we pair the vertices of Wc′′ that
are leaves with a subset of Wc′ as follows. For each z that is a leaf of a 2-thread or
a 4-thread, define z∗ to be the neighbor of z. For each z that is a leaf of a 1-thread,
we may assign a unique z∗ such that z∗ is a neighbor of the root and z∗ lies in a
4-thread. (Note that this is possible because, from the second paragraph of this proof,
a2 + a4 ≥ 4, whence a4 ≥ d(x) − 4 ≥ a4 + a2 + a1 − 4 ≥ 4 + a1 − 4 = a1.) Now in
every case, z ∈ Wc′′ and z∗ ∈ Wc′ by construction; swap the colors on z and z∗ if c′′

is not in �z. Note that the obtained coloring is legitimate because, in each case, the
other vertices adjacent to z∗ received the color c.

Lemma 4.2 (reducing two vertices connected by a 1-thread; one vertex may have
one 0-thread). Suppose x and y are connected by a 1-thread and that d(x)+ d(y) ≤ 8.
Let S be a graph of order s induced by the union of the subdivided star with root x
and the subdivided star with root y. Let L = {�v} be a list assignment to the vertices
of S such that �v = {1, 2, 3} if v is neither a leaf nor y, �v ⊂ {1, 2, 3} with |�v| = 2
if v is a leaf, and �y ⊆ {1, 2, 3} with |�y| ≥ 2. Let bi = axi + ayi for i ∈ {2, 4}, and let
b1 = ax1 + ay1 − 1. Then S is descending-equitably L-colorable if 2b4 + b2 ≥ b1 − 1 + ε
and b4 ≥ 1, where ε = 3�s/3� − s.

Proof. Let c and c′ be two colors allowed at y. Let pi (i ∈ {1, 2, 3}) be the desired
size of Vi. Let Si (i ∈ {c, c′}) be a maximum independent set that contains x and y
and is such that i ∈ �v for all v ∈ Si. Then no vertex of a 1-thread is in any of the Si’s;
each 2-thread contains a leaf that is in at least one of the Si’s; and for each 4-thread
incident with x (y, respectively), the leaf is in at least one of the Si’s, and the vertex
at distance 2 from x (y) is in both of the Si’s. Thus |Sc|+ |Sc′ | ≥ 4 + 3b4 + b2.

We wish first to find a color for the root that may be extended to an in-
dependent set of size �s/3�; the candidates for such a set are Sc and Sc′ . As-
sume, for a contradiction, that they are both of size at most �s/3� − 1. Then
4+3b4+b2 ≤ |Sc|+|Sc′| ≤ 2(�s/3�−1) = 2

3 (s+ε−3) = 2
3 (4b4+2b2+b1+2). Therefore,

b4 +14 ≤ b2 +2(b1 + ε) ≤ b2 +2(2b4 + b2)+ 2, that is, b4 + b2 ≥ 4. So b2 +2(b1 + ε) ≥
b4 + 14 ≥ 18 − b2, and hence b1 + b2 + ε ≥ 9. Adding b4 to both sides and observing
that ε ≤ 2 yields that d(x)+d(y)+1 = b1+b2+b4+2 ≥ b1+b2+b4+ε ≥ 9+b4 ≥ 10,
whence d(x) + d(y) ≥ 9, which contradicts our assumption that d(x) + d(y) ≤ 8.

Thus there exists an independent set of size at least �s/3� containing x and y
and having a common color available. Let c be that color, and fix a subset Tc of Sc of
size exactly pc, with the additional property that Tc contains all vertices of 4-threads
incident with x or y that are at distance exactly 2 from x or y, respectively. (This is
possible because b4 < s/3.)

Let c′ and c′′ be the other two colors. Without loss of generality, we may assume
that pc′ ≥ pc′′ . We color with c′ first. By construction, Tc contains no vertices at
distance 1 or 3 from either x or y. There are 2b4 + b2 + 1 such vertices that are
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not leaves. Assuming that pc′ ≥ �s/3�, we compare these quantities and find that
�s/3� = 4b4+2b2+b1+2+ε

3 ≤ 4b4+2b2+2+2b4+b2+1
3 ≤ 2b4+b2+1; thus, at worst, 2b4+b2+1

is exactly “big enough,” and we assign a preliminary set Wc′ the color c′, such that
(a) all vertices that are on a 4-thread incident with x or y at a distance of 3 from x
or y, respectively, are in Wc′ and (b) some nonleaf vertices adjacent to x or y are in
Wc′ such that Wc′ has size pc′ . (This is possible because again b4 < s/3.)

The remaining vertices, which we shall group together in a set Wc′′ , are “assigned”
the color c′′, with the caveat that these Wc′′ vertices contain the leaves and thus may
not have c′′ in their list.

To pass, therefore, to a legitimate L-coloring, we pair the vertices of Wc′′ that
are leaves with a subset of Wc′ as follows. For each z that is a leaf of a 2-thread or
a 4-thread, define z∗ to be the neighbor of z. For each z that is a leaf of a 1-thread,
we may assign a unique z∗ such that z∗ is a neighbor of x or y and that z∗ lies in
a 4-thread or such that z∗ is the neighbor of a leaf colored by c. (Note that this is
possible because b4+ |{leafs colored c}| = pc ≥ pc′′ .) Now, in every case, z ∈ Wc′′ and
z∗ ∈ Wc′ by construction; swap the colors on z and z∗ if c′′ is not in �z. Note that the
obtained coloring is legitimate because in each case, the other vertices adjacent to z∗

received the color c.

5. Equitable 3-coloring. In this section, we prove Theorem 1.3.
By Theorem 1.2, we need to show only that planar graphs with minimum degree

at least 2 and girth at least 14 are equitably 3-colorable. Suppose not, and let G be a
counterexample with |V |+ |E| as small as possible. The proof of the following claim
is essentially a line-by-line copy of the proof of Claim 3.1, so we omit it.

Claim 5.1. G has no t-thread where t = 3 or t ≥ 5 and no thread with the same
endvertices.

Similarly to section 3, for a vertex x, let T (x) = (a4, a2, a1, a0), where ai is the
number of i-threads incident to x, and let t(x) = 4a4 + 2a2 + a1.

Claim 5.2. Let x be a vertex with 3 ≤ d(x) ≤ 6. Then
(a) if d(x) = 3, then either t(x) ≤ 4 or T (x) = (1, 0, 2, 0);
(b) if d(x) = 4, then t(x) ≤ 7 or T (x) = (2, 0, 0, 2);
(c) if d(x) ∈ {5, 6}, then a4 ≤ d(x) − 2.

Proof. Assume, for a contradiction, that (i) d(x) = 3 and t(x) ≥ 5 (ii) d(x) = 4
and t(x) ≥ 8, or (iii) d(x) ∈ {5, 6} and a4 ≥ d(x) − 1.

Note that if d(x) ∈ {3, 5, 6}, a0 ≤ 1. If d(x) = 4, then a0 > 1 and t(x) ≥ 8 only
if a4 = a0 = 2, in which case T (x) = (1, 0, 2, 0), as wanted. So we may assume that
a0 ≤ 1, and thus Lemma 4.1 applies.

Let H be the subgraph of G induced by x and its loosely adjacent 2-vertices. Then
G−H has an equitable 3-coloring f , and we may assume that f cannot be extended

to H . Thus, by Lemma 4.1, 2a4 + a2 ≤ a1 + ε, where ε = 3� |V (H)|
3 � − |V (H)|. Since

t(x) = 4a4 + 2a2 + a1,

(3) t(x) = 2(2a4 + a2) + a1 ≤ 3a1 + 2ε.

Let d(x) = 3. By (3), a1 ≥ 1. Then (a4, a2) ∈ {(1, 1), (2, 0), (1, 0), (0, 2)}. If
(a4, a2) = (1, 1), then ε = 1 and a1 = 1, a contradiction to (3). If (a4, a2) = (2, 0),
then a1 = 1 and ε = 2, a contradiction to (3) again. And if (a4, a2) = (0, 2), then
a1 = 1 and ε = 0, another contradiction to (3). So (a4, a2) = (1, 0). It follows that
a1 = 2 or a1 = a0 = 1. If a1 = a0 = 1, then ε = 0, a contradiction to (3). Therefore
a1 = 2 and T (x) = (1, 0, 2, 0).
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Let d(x) = 4. By (3), a1 ≥ 2. Then (a4, a2) ∈ {(1, 1), (2, 0)}. Consequently, a1 = 2.
If (a4, a2) = (1, 1), then ε = 0, a contradiction to (3). If (a4, a2) = (2, 0), then ε = 1,
again a contradiction to (3).

If d(x) ∈ {5, 6}, then a1 ≤ 1, which contradicts (3).
We call a 3-vertex x bad if T (x) = (1, 0, 2, 0).
Claim 5.3. Let x be a bad 3-vertex. Let y be a 3-vertex that is loosely 1-adjacent

to x. Then
(a) y is not incident to a t-thread where t ≥ 2; hence t(y) ≤ 3; and
(b) x is the only bad 3-vertex to which y is loosely 1-adjacent.

Proof. (a) Suppose that y is incident with a t−thread where t ≥ 2. Let H be the
subgraph of G induced by x, y, and all 2-vertices loosely adjacent to x or y. We apply
Lemma 4.2 to H , observing that b4 = ay4 + 1, b2 = ay2 , and b1 = ay1 + 1. We find that
H is reducible if 2b4 + b2 ≥ b1 − 1 + ε or equivalently if 2ay4 + ay2 ≥ ay1 + ε− 2.

Now if ay1 = 1, then 2ay4+ay2 ≥ 1 ≥ ε−1 = ay1+ε−2. Hence, since y is adjacent to
a t-thread with t ≥ 2, it must be that ay1 = 2. Thus we may reduce H if 2ay4 + ay2 ≥ ε.
This is true if ay4 > 0. Thus we may assume that ay2 = 1. But in this case, |H | = 11,
ε = 1, and ay2 ≥ ε. Thus H is reducible.

(b) Suppose now that y is also loosely 1-adjacent to another bad 3-vertex z. Let
H be the subgraph induced by x, y, z and all the 2-vertices loosely adjacent to x,
y, or z. Let G′ be G −H . Note that by the girth condition, x and z may be loosely
adjacent to the same vertex w through the 4-threads, but in that case, w cannot
be a 3-vertex since otherwise it violates Claim 5.2(a). So δ(G′) ≥ 2, and thus G′ is
equitably 3-colorable. We need to extend this equitable 3-coloring to all of G.

We will 3-color H , and for i ∈ {1, 2, 3}, let Ui be the set of vertices of H colored
by i. For the coloring to remain equitable, we need |U1| ≥ |U2| ≥ |U3| ≥ |U1| − 1. Call
a proper coloring of H “good” if it satisfies |U1| ≥ |U2| ≥ |U3| ≥ |U1| − 1.

The union of x, y, z together with the 1-threads at x and z forms a 9-path; let us
label it as v1w1xw2yw3zw4v2. Label the 4-thread at x as xx1x2x3x4v3, and label the
4-thread at z as zz1z2z3z4v4.

First suppose that y is adjacent to a 0-thread. Then |Ui| should be 5 for all i,
and some color is disallowed at y by its adjacency in G to a vertex of G′. Assume,
without loss of generality, that 3 is an allowed color at y. Let U ′

1 = {w1, w4, x1, x3, z3},
U ′
2 = {w2, w3, x4, z1, z4}, and U ′

3 = {x, y, z, x2, z2}. This is a good coloring of H , so
it remains only to repair any conflicts at the leaves of H when H is attached to G′.
Notice that if there is a conflict with the leaf adjacent to w1, we may simply swap the
colors on w1 and w2. Likewise, we may pair w3 with w4, x3 with x4, and z3 with z4,
swapping any pair if there is a conflict at the associated leaf. Any such swap results in
another good coloring of H , and swapping any pair does not interfere with any other
pair. Thus we may obtain appropriate Ui in this case.

If y is incident to a third 1-thread with 2-vertex y1, then we keep the U ′
is as

before and color y1 by 1. Note that y1 and z1 form another swappable pair if there is
a conflict at y1.

By (a), y is not incident to any t-thread with t ≥ 2, so the proof is
complete.
Since g(G) ≥ 14, we have mad(G) < 7

3 . Let M(x) = d(x) − 7
3 be the initial charge

of x for x ∈ V . We will redistribute the charges among vertices according to the
discharging rules below:

(R1) Every 3+-vertex sends 1
6 to each loosely adjacent 2-vertex.

(R2) Every 3+-vertex sends 1
6 to each loosely 1-adjacent bad 3-vertex.
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Let M ′(x) be the final charge of x. The following claim shows a contradiction to
(1), which in turn implies the truth of Theorem 1.3.

Claim 5.4. For each x ∈ V , M ′(x) ≥ 0.
Proof. If d(x) = 2, then M ′(x) = 2− 7

3 + 2 · 1
6 = 0.

If d(x) = 3, then if x is bad, it gains 1
6 from each of the two loosely 1-adjacent

vertices, and thus M ′(x) ≥ 3− 7
3 − 6 · 1

6 + 2 · 1
6 = 0. If x is not bad and is not loosely

1-adjacent to a bad vertex, then M ′(x) ≥ 3 − 7
3 − 4 · 1

6 = 0 by Claim 5.2. If x is not
bad and is loosely 1-adjacent to a bad 3-vertex, then t(x) ≤ 3 by Claim 5.3, and thus
M ′(x) ≥ 3− 7

3 − 3 · 1
6 − 1

6 = 0.

For d(x) ≥ 4, note that M ′(x) ≥ d(x)− 7
3 − (4a4+2a2+2a1)

6 . Since d(x) = a4+ a2+
a1 + a0,

M ′(x) ≥ 1

3
(2d(x)− 7− a4 + a0) .

If d(x) ≥ 7, then M ′(x) ≥ (d(x)− a4 + a0)/3 ≥ 0. If d(x) ∈ {5, 6},then Claim 5.2
implies that a4 ≤ d(x)− 2, and thus M ′(x) ≥ 0.

Assume now that x has degree 4. To show that M ′(x) ≥ 0, it suffices to show
that a4 ≤ a0 + 1, which is true since Claim 5.2 ensures that a4 ≤ 1, or (a4, a0) =
(2, 2).
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